
Building Android with 
clang

Linux Plumbers Conference 2014,
Android Microconference

Bernhard “Bero” Rosenkränzer, Linaro
bero@linaro.org



Quick status update for the impatient

“It compiles, therefore it works”

(A dangerous method of detecting bugs - might 
be patented by Microsoft QA dept.)



Quick status update for the impatient

“It compiles, therefore it works”
boots to text mode



Quick status update for the impatient

“It compiles, therefore it works”

Compiles for Nexus 4, 5, 7 and 10.
4 and 5 are currently untested.

boots to text mode
and runs many apps



Patch submission status

Overall 112 patches submitted
74 accepted
34 waiting
4 abandoned in favor of better solutions

Script to apply all waiting patches:
git://android.git.linaro.org/aosp-patchsets.git



Cheating twice...

We’re currently setting
LOCAL_CLANG := false
for /init and the GLESv1 and GLESv2 wrappers 
in frameworks/native/opengl/libs -- causing 
those bits to be compiled with gcc.



Cheating twice...

clang-built /init reboots the device before adb or 
other tools useful for debugging come up (even 
running clang-built init on an already built 
system causes a reboot - we’re likely triggering 
an error handler)

clang-built GLESv2 crashes the UI on startup.



Quick performance check

Currently, clang-built AOSP is around 2.6% 
bigger than gcc-built AOSP, performance 
comparisons vary depending on what is being 
tested, but overall, gcc is still ahead.

clang is around 20% faster at “make droidcore”.



Sometimes clang is picky...

● “register” keyword usage in Chromium
● array subscripts of type “char” (hexdigit[‘0’]

=...)
● undefined internal functions, undefined 

variables
● Use of GNU initializers instead of C99
● Conditions that can’t be true



Sometimes clang is picky...

● empty structs
● asm(“add w0, w0, #-1”);

(converted to sub w0, w0, #1 by gas, 
but not by clang)

● unused parameters



Sometimes clang is picky...

● Complains even about code that is about to 
be thrown away:
static void a();
void b() {
    if (false)
        a();
}



… and sometimes it finds real bugs

UCHAR a[X];
for(int i=0; i<X; i++)
    b = a ? tagCpe++ : tagSce++;

from MPEG TP decoder



… and sometimes it finds real bugs
char str[30];

snprintf(str, “%s”, x);

if(str == NULL)

    return ERROR;

from qcom camera HAL



… and sometimes it finds real bugs
void something(char n[30]) {

    if(!memcmp(buffer, n, sizeof(n))) {

        …

    }

}

from qcom bluetooth kernel module



gcc extensions
AOSP used to use some gcc extensions not supported by 
clang:
● Nested functions
● __builtin_va_arg_pack
● variable-length arrays of non-POD types
● variable-length arrays in structs



… and 1 clang bug
There’s only 1 place in which we have to work around a 
clang bug:

char s[x] __attribute__((__aligned__
(PAGESIZE)));

http://llvm.org/bugs/show_bug.cgi?id=13007
/init and GLESv2 miscompiling may or may not be clang 
bugs.

http://llvm.org/bugs/show_bug.cgi?id=13007
http://llvm.org/bugs/show_bug.cgi?id=13007


Things that still need to be done

● Fix /init and GLES wrappers
● Investigate crashing apps
● Test other devices (esp. Aarch64, x86, 

MIPS)
● Set up daily builds so we detect new 

breakages and patches no longer applying 
quickly



Things that still need to be done

● Update clang (AOSP currently uses a pre-
3.5 snapshot) integrated-as enabled

● Fix build failures with
● Test different compiler options
● Build the kernel with clang too (currently 

using the prebuilt kernel)
● Optimize



What else?

What else can we do to improve clang support 
in AOSP?


